(Following Paper ID and Roll No. to be filled in your Answer Book)														
PAPER	IĐ	:	131653	Roll No.					L	L	L			

B.Tech.

(SEM. VI) THEORY EXAMINATION 2013-14 ADVANCED SEMICONDUCTOR DEVICES

Time: 2 Hours

Total Marks: 50

Note:

- (1) Attempt all questions.
- (2) Marks are indicated for each question.
- (3) Assume the missing data, if any.
- 1. Attempt any two parts of the following:

 $(6 \times 2 = 12)$

- (a) (i) Find the nearest neighbor distance in a diamond lattice.
 - (ii) Define the saturation range of temperature in semiconductor. What is the equilibrium electron concentration of an extrinsic semiconductor in this range.
- (b) Write down the expression for Fermi-Dirac distribution function. Explain the meaning of each parameter. Show that the probability that a state ΔE above the Fermi level, E_F is filled, equals the probability that a state ΔE below E_F is empty.
- (c) Define diffusion coefficient and mobility of a carrier. Derive an expression for electron mobility in terms of diffusion coefficient of electron.

- 2. Attempt any two parts of the following: $(6 \times 2 = 12)$
 - (a) What is diffusion potential? Find the value of diffusion potential of an abrupt silicon p-n junction with equal doping level of 10²¹ impurity atoms/m³ at room temperature. Derive the expression used if any.
 - (b) What do you mean by a rectifying contact? State the condition for which the junction between a metal and n-type semiconductor will work as a rectifying contact. Draw the energy band diagram of a rectifying contact formed between a metal and n-type semiconductor at equilibrium condition.
 - (c) Describe the physical mechanism for p-n junction breakdown. Draw a circuit which uses a breakdown diode to regulate the voltage across a load. Explain its operation.
- 3. Attempt any two parts of the following: $(6 \times 2 = 12)$
 - (a) What is transferred electron effect? Describe a device based on this effect with suitable diagram in detail. Also draw its characteristics.
 - (b) What is photodetector? Explain the operation of a p-i-n photodetector. What are the suitable materials for it? How can it be made more sensitive to low level intensity of light?
 - (c) Draw a schematic diagram of TRAPATT diode and discuss its working principle. Calculate the avalanche-zone velocity for a TRAPATT diode having the acceptor doping concentration in the p-region Na = 10¹⁵/cm³ and current density J = 8 kA/cm².
- 4. Attempt any two parts of the following: (7×2=14)
 - (a) Discuss briefly, the operation of normally- ON and normall-OFF MESFET with suitable diagram and characteristics. What are the special features of MESFETs. Explain.

- (b) A 1000 Å thick layer of SiO₂ is grown on uniformly doped Si with 10¹⁵ Boron atoms/cm³ to make an ideal MOS capacitor. Calculate the threshold voltage and major points on the C-V curve. The relative dielectric constants for Si and SiO₂ are 11.8 and 3.9 respectively. Also given permittivity of free space is 8.85 × 10⁻¹² Farad/meter.
- (c) With suitable schematic diagrams show the input and output arrangements for charge-coupled device and explain charge transfer efficiency of the device. What is a surface channel CCD. Explain.

3